If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2-18b-15=0
a = 1; b = -18; c = -15;
Δ = b2-4ac
Δ = -182-4·1·(-15)
Δ = 384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{384}=\sqrt{64*6}=\sqrt{64}*\sqrt{6}=8\sqrt{6}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-8\sqrt{6}}{2*1}=\frac{18-8\sqrt{6}}{2} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+8\sqrt{6}}{2*1}=\frac{18+8\sqrt{6}}{2} $
| 6(3x+8)=156 | | 28b-9b-9=4b-3 | | 324Xx=18 | | 7(-5+6x)=-371 | | 5k+1=1 | | 262-x=77 | | 1/3x+12=180-x | | -4(10+7x)=-292 | | -17y+15y^2+4=3y-1 | | 3-3y+6y=12 | | 9+4x=-10x | | 2(5^p)=250 | | -3(6+4x)=-54 | | 5x2-6x-5=0 | | 40=2x+2*x | | u-4.46=5.94 | | X^2+2x+8=40 | | 4(x-9)=-9 | | -3(7+6x)=50 | | (6x-5)+5x+75=180 | | 15=-3(w-1)+9 | | 4x-7x-14=-3x+9-14 | | u-4.7=6.3 | | 2q^2-139+20=0 | | (4+7x)+53+39=180 | | 2(3x+7=81 | | 10x+20=540 | | m3+5=8 | | 10w^2+19w-15=0 | | 2x²-30x+108=0 | | (5x-18)4=-36 | | 6x+4-2x=-8 |